If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-45=0
a = 10; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·10·(-45)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*10}=\frac{0-30\sqrt{2}}{20} =-\frac{30\sqrt{2}}{20} =-\frac{3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*10}=\frac{0+30\sqrt{2}}{20} =\frac{30\sqrt{2}}{20} =\frac{3\sqrt{2}}{2} $
| 4.1x=25 | | 0.3z-0.05=0.04z | | 4x•8x=528 | | d=-6.5 | | 4x•6x=528 | | 7x-1=2x+46 | | 86=x(2x-4) | | 4x.4x=528 | | 4g-g-2g-g+g=8 | | R(x)=200x−x2;C(x)=30x+4200;0≤x≤100 | | w4.5;w=4.45 | | -109=-11+7x | | 6(4w+5)/5=8 | | a-8;a=-7.5 | | (8)/(3x)*6x=16 | | Y=24•0.5x | | -10(s+4)=-35 | | 21÷x-4=7 | | -9=15+v-3 | | x4=41/4 | | Z=5w+1 | | 3(5-3x)=7x=9 | | v^2=-80 | | 14/65=x | | 1-6x=2x-17 | | 2b+b-2b+12b=39 | | -5+2/x=-13 | | V(x)=x(3x)*(x-5)=3x^3-15x^2 | | 10+1.3x=2.3x | | -9p-15=94 | | |9-2x|=19 | | 2/5.5=7/x |